Skip to main content

Cytokinesis and cell plate formation

Cytokinesis
Mitosis is the process of separating the duplicates of each of the cell's chromosomes. It is usually followed by division of the cell. However, there are cases (cleavage in the insect embryo is an example) where the chromosomes undergo the mitotic process without division of the cell. Thus a special term, cytokinesis, for the separation of a cell into two.
In animal cells, a belt of actin filaments forms around the perimeter of the cell, midway between the poles. The interaction of actin and a myosin (not the one found in skeletal muscle) tightens the belt, and the cell is pinched into two daughter cells.
In plant cells, a cell plate forms where the metaphase plate had been. The cell plate is synthesized by the fusion of multiple membrane-bounded vesicles. Their fusion supplies new plasma membrane for each of the two daughter cells. Synthesis of a new cell wall between the daughter cells then occurs at the cell plate.

Cytokinesis is the process whereby the cytoplasm of a single eukaryotic cell is divided to form two daughter cells. It usually initiates during the late stages of mitosis, and sometimes meiosis, splitting a binucleate cell in two, to ensure that chromosome number is maintained from one generation to the next. In plant cells, a dividing structure known as the cell plate forms across the centre of the cytoplasm and a new cell wall forms between the two daughter cells. [1]
Cell plate formation
Due to the presence of a cell wall, cytokinesis in plant cells is significantly different from that in animal cells. Rather than forming a contractile ring, plant cells construct a cell plate in the middle of the cell. The Golgi apparatus releases vesicles containing cell wall materials. These vesicles fuse at the equatorial plane and form a cell plate. The cell plate begins as a fusion tube network, which then becomes a tubule-vesicular network (TVN) as more components are added. The TVN develops into a tubular network, which then becomes a fenestrated sheet which adheres to the existing plasma membrane.

 Phragmoplast and cell plate formation in a plant cell during cytokinesis. Left side: Phragmoplast forms and cell plate starts to assemble in the center of the cell. Towards the right: Phragmoplast enlarges towards the outside of the cell, leaving behind mature cell plate in the center. The cell plate will transform into the new cell wall once cytokinesis is complete.
Cytokinesis in terrestrial plants occurs by cell plate formation. This process entails the delivery of Golgi-derived and endosomal vesicles carrying cell wall and cell membrane components to the plane of cell division and the subsequent fusion of these vesicles within this plane.
After formation of an early tubule-vesicular network at the center of the cell, the initially labile cell plate consolidates into a tubular network and eventually a fenestrated sheet. The cell plate grows outward from the center of the cell to the parental plasma membrane with which it will fuse, thus completing cell division. Formation and growth of the cell plate is dependent upon the phragmoplast, which is required for proper targeting of Golgi-derived vesicles to the cell plate.
As the cell plate matures in the central part of the cell, the phragmoplast disassembles in this region and new elements are added on its outside. This process leads to a steady expansion of the phragmoplast, and concomitantly, to a continuous retargeting of Golgi-derived vesicles to the growing edge of the cell plate. Once the cell plate reaches and fuses with the plasma membrane the phragmoplast disappears. This event not only marks the separation of the two daughter cells, but also initiates a range of biochemical modifications that transform the  flexible cell plate into a cellulose-rich, stiff primary cell wall.

The heavy dependence of cell plate formation on active Golgi stacks explains why plant cells, unlike mammalian cells, do not disassemble their secretion machinery during cell division.

Comments

Popular posts from this blog